3.165 \(\int \frac{1}{x^3 (b \sqrt [3]{x}+a x)^{3/2}} \, dx\)

Optimal. Leaf size=246 \[ \frac{663 a^{15/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{154 b^{21/4} \sqrt{a x+b \sqrt [3]{x}}}+\frac{663 a^3 \sqrt{a x+b \sqrt [3]{x}}}{77 b^5 x^{2/3}}-\frac{1989 a^2 \sqrt{a x+b \sqrt [3]{x}}}{385 b^4 x^{4/3}}+\frac{221 a \sqrt{a x+b \sqrt [3]{x}}}{55 b^3 x^2}-\frac{17 \sqrt{a x+b \sqrt [3]{x}}}{5 b^2 x^{8/3}}+\frac{3}{b x^{7/3} \sqrt{a x+b \sqrt [3]{x}}} \]

[Out]

3/(b*x^(7/3)*Sqrt[b*x^(1/3) + a*x]) - (17*Sqrt[b*x^(1/3) + a*x])/(5*b^2*x^(8/3)) + (221*a*Sqrt[b*x^(1/3) + a*x
])/(55*b^3*x^2) - (1989*a^2*Sqrt[b*x^(1/3) + a*x])/(385*b^4*x^(4/3)) + (663*a^3*Sqrt[b*x^(1/3) + a*x])/(77*b^5
*x^(2/3)) + (663*a^(15/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b + a*x^(2/3))/(Sqrt[b] + Sqrt[a]*x^(1/3))^2]*x^(1
/6)*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(154*b^(21/4)*Sqrt[b*x^(1/3) + a*x])

________________________________________________________________________________________

Rubi [A]  time = 0.364747, antiderivative size = 246, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {2018, 2023, 2025, 2011, 329, 220} \[ \frac{663 a^3 \sqrt{a x+b \sqrt [3]{x}}}{77 b^5 x^{2/3}}-\frac{1989 a^2 \sqrt{a x+b \sqrt [3]{x}}}{385 b^4 x^{4/3}}+\frac{663 a^{15/4} \sqrt [6]{x} \left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right ) \sqrt{\frac{a x^{2/3}+b}{\left (\sqrt{a} \sqrt [3]{x}+\sqrt{b}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{154 b^{21/4} \sqrt{a x+b \sqrt [3]{x}}}+\frac{221 a \sqrt{a x+b \sqrt [3]{x}}}{55 b^3 x^2}-\frac{17 \sqrt{a x+b \sqrt [3]{x}}}{5 b^2 x^{8/3}}+\frac{3}{b x^{7/3} \sqrt{a x+b \sqrt [3]{x}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(b*x^(1/3) + a*x)^(3/2)),x]

[Out]

3/(b*x^(7/3)*Sqrt[b*x^(1/3) + a*x]) - (17*Sqrt[b*x^(1/3) + a*x])/(5*b^2*x^(8/3)) + (221*a*Sqrt[b*x^(1/3) + a*x
])/(55*b^3*x^2) - (1989*a^2*Sqrt[b*x^(1/3) + a*x])/(385*b^4*x^(4/3)) + (663*a^3*Sqrt[b*x^(1/3) + a*x])/(77*b^5
*x^(2/3)) + (663*a^(15/4)*(Sqrt[b] + Sqrt[a]*x^(1/3))*Sqrt[(b + a*x^(2/3))/(Sqrt[b] + Sqrt[a]*x^(1/3))^2]*x^(1
/6)*EllipticF[2*ArcTan[(a^(1/4)*x^(1/6))/b^(1/4)], 1/2])/(154*b^(21/4)*Sqrt[b*x^(1/3) + a*x])

Rule 2018

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 2023

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(c^(j - 1)*(c*x)^(m - j
+ 1)*(a*x^j + b*x^n)^(p + 1))/(a*(n - j)*(p + 1)), x] + Dist[(c^j*(m + n*p + n - j + 1))/(a*(n - j)*(p + 1)),
Int[(c*x)^(m - j)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] &
& (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[p, -1]

Rule 2025

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (b \sqrt [3]{x}+a x\right )^{3/2}} \, dx &=3 \operatorname{Subst}\left (\int \frac{1}{x^7 \left (b x+a x^3\right )^{3/2}} \, dx,x,\sqrt [3]{x}\right )\\ &=\frac{3}{b x^{7/3} \sqrt{b \sqrt [3]{x}+a x}}+\frac{51 \operatorname{Subst}\left (\int \frac{1}{x^8 \sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{2 b}\\ &=\frac{3}{b x^{7/3} \sqrt{b \sqrt [3]{x}+a x}}-\frac{17 \sqrt{b \sqrt [3]{x}+a x}}{5 b^2 x^{8/3}}-\frac{(221 a) \operatorname{Subst}\left (\int \frac{1}{x^6 \sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{10 b^2}\\ &=\frac{3}{b x^{7/3} \sqrt{b \sqrt [3]{x}+a x}}-\frac{17 \sqrt{b \sqrt [3]{x}+a x}}{5 b^2 x^{8/3}}+\frac{221 a \sqrt{b \sqrt [3]{x}+a x}}{55 b^3 x^2}+\frac{\left (1989 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{x^4 \sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{110 b^3}\\ &=\frac{3}{b x^{7/3} \sqrt{b \sqrt [3]{x}+a x}}-\frac{17 \sqrt{b \sqrt [3]{x}+a x}}{5 b^2 x^{8/3}}+\frac{221 a \sqrt{b \sqrt [3]{x}+a x}}{55 b^3 x^2}-\frac{1989 a^2 \sqrt{b \sqrt [3]{x}+a x}}{385 b^4 x^{4/3}}-\frac{\left (1989 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{154 b^4}\\ &=\frac{3}{b x^{7/3} \sqrt{b \sqrt [3]{x}+a x}}-\frac{17 \sqrt{b \sqrt [3]{x}+a x}}{5 b^2 x^{8/3}}+\frac{221 a \sqrt{b \sqrt [3]{x}+a x}}{55 b^3 x^2}-\frac{1989 a^2 \sqrt{b \sqrt [3]{x}+a x}}{385 b^4 x^{4/3}}+\frac{663 a^3 \sqrt{b \sqrt [3]{x}+a x}}{77 b^5 x^{2/3}}+\frac{\left (663 a^4\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b x+a x^3}} \, dx,x,\sqrt [3]{x}\right )}{154 b^5}\\ &=\frac{3}{b x^{7/3} \sqrt{b \sqrt [3]{x}+a x}}-\frac{17 \sqrt{b \sqrt [3]{x}+a x}}{5 b^2 x^{8/3}}+\frac{221 a \sqrt{b \sqrt [3]{x}+a x}}{55 b^3 x^2}-\frac{1989 a^2 \sqrt{b \sqrt [3]{x}+a x}}{385 b^4 x^{4/3}}+\frac{663 a^3 \sqrt{b \sqrt [3]{x}+a x}}{77 b^5 x^{2/3}}+\frac{\left (663 a^4 \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{b+a x^2}} \, dx,x,\sqrt [3]{x}\right )}{154 b^5 \sqrt{b \sqrt [3]{x}+a x}}\\ &=\frac{3}{b x^{7/3} \sqrt{b \sqrt [3]{x}+a x}}-\frac{17 \sqrt{b \sqrt [3]{x}+a x}}{5 b^2 x^{8/3}}+\frac{221 a \sqrt{b \sqrt [3]{x}+a x}}{55 b^3 x^2}-\frac{1989 a^2 \sqrt{b \sqrt [3]{x}+a x}}{385 b^4 x^{4/3}}+\frac{663 a^3 \sqrt{b \sqrt [3]{x}+a x}}{77 b^5 x^{2/3}}+\frac{\left (663 a^4 \sqrt{b+a x^{2/3}} \sqrt [6]{x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+a x^4}} \, dx,x,\sqrt [6]{x}\right )}{77 b^5 \sqrt{b \sqrt [3]{x}+a x}}\\ &=\frac{3}{b x^{7/3} \sqrt{b \sqrt [3]{x}+a x}}-\frac{17 \sqrt{b \sqrt [3]{x}+a x}}{5 b^2 x^{8/3}}+\frac{221 a \sqrt{b \sqrt [3]{x}+a x}}{55 b^3 x^2}-\frac{1989 a^2 \sqrt{b \sqrt [3]{x}+a x}}{385 b^4 x^{4/3}}+\frac{663 a^3 \sqrt{b \sqrt [3]{x}+a x}}{77 b^5 x^{2/3}}+\frac{663 a^{15/4} \left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right ) \sqrt{\frac{b+a x^{2/3}}{\left (\sqrt{b}+\sqrt{a} \sqrt [3]{x}\right )^2}} \sqrt [6]{x} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{a} \sqrt [6]{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{154 b^{21/4} \sqrt{b \sqrt [3]{x}+a x}}\\ \end{align*}

Mathematica [C]  time = 0.0561036, size = 64, normalized size = 0.26 \[ -\frac{2 \sqrt{\frac{a x^{2/3}}{b}+1} \, _2F_1\left (-\frac{15}{4},\frac{3}{2};-\frac{11}{4};-\frac{a x^{2/3}}{b}\right )}{5 b x^{7/3} \sqrt{a x+b \sqrt [3]{x}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(b*x^(1/3) + a*x)^(3/2)),x]

[Out]

(-2*Sqrt[1 + (a*x^(2/3))/b]*Hypergeometric2F1[-15/4, 3/2, -11/4, -((a*x^(2/3))/b)])/(5*b*x^(7/3)*Sqrt[b*x^(1/3
) + a*x])

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 262, normalized size = 1.1 \begin{align*}{\frac{1}{770\,{b}^{5}{x}^{5}} \left ( 3315\,\sqrt{{\frac{a\sqrt [3]{x}+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-a\sqrt [3]{x}+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{a\sqrt [3]{x}}{\sqrt{-ab}}}}{\it EllipticF} \left ( \sqrt{{\frac{a\sqrt [3]{x}+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ) \sqrt{-ab}{x}^{14/3}\sqrt{\sqrt [3]{x} \left ( b+a{x}^{2/3} \right ) }{a}^{3}-884\,{x}^{11/3}\sqrt{\sqrt [3]{x} \left ( b+a{x}^{2/3} \right ) }{a}^{2}{b}^{2}+2652\,{x}^{13/3}\sqrt{\sqrt [3]{x} \left ( b+a{x}^{2/3} \right ) }{a}^{3}b+476\,{x}^{3}\sqrt{\sqrt [3]{x} \left ( b+a{x}^{2/3} \right ) }a{b}^{3}+2310\,\sqrt{b\sqrt [3]{x}+ax}{x}^{5}{a}^{4}+4320\,\sqrt{\sqrt [3]{x} \left ( b+a{x}^{2/3} \right ) }{x}^{5}{a}^{4}-308\,{x}^{7/3}\sqrt{\sqrt [3]{x} \left ( b+a{x}^{2/3} \right ) }{b}^{4} \right ) \left ( b+a{x}^{{\frac{2}{3}}} \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(b*x^(1/3)+a*x)^(3/2),x)

[Out]

1/770*(3315*((a*x^(1/3)+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-a*x^(1/3)+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/
2)*(-x^(1/3)*a/(-a*b)^(1/2))^(1/2)*EllipticF(((a*x^(1/3)+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)
^(1/2)*x^(14/3)*(x^(1/3)*(b+a*x^(2/3)))^(1/2)*a^3-884*x^(11/3)*(x^(1/3)*(b+a*x^(2/3)))^(1/2)*a^2*b^2+2652*x^(1
3/3)*(x^(1/3)*(b+a*x^(2/3)))^(1/2)*a^3*b+476*x^3*(x^(1/3)*(b+a*x^(2/3)))^(1/2)*a*b^3+2310*(b*x^(1/3)+a*x)^(1/2
)*x^5*a^4+4320*(x^(1/3)*(b+a*x^(2/3)))^(1/2)*x^5*a^4-308*x^(7/3)*(x^(1/3)*(b+a*x^(2/3)))^(1/2)*b^4)/b^5/x^5/(b
+a*x^(2/3))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a x + b x^{\frac{1}{3}}\right )}^{\frac{3}{2}} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^(1/3)+a*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((a*x + b*x^(1/3))^(3/2)*x^3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (a^{4} x^{3} + 3 \, a^{2} b^{2} x^{\frac{5}{3}} - 2 \, a b^{3} x -{\left (2 \, a^{3} b x^{2} - b^{4}\right )} x^{\frac{1}{3}}\right )} \sqrt{a x + b x^{\frac{1}{3}}}}{a^{6} x^{8} + 2 \, a^{3} b^{3} x^{6} + b^{6} x^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^(1/3)+a*x)^(3/2),x, algorithm="fricas")

[Out]

integral((a^4*x^3 + 3*a^2*b^2*x^(5/3) - 2*a*b^3*x - (2*a^3*b*x^2 - b^4)*x^(1/3))*sqrt(a*x + b*x^(1/3))/(a^6*x^
8 + 2*a^3*b^3*x^6 + b^6*x^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{3} \left (a x + b \sqrt [3]{x}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(b*x**(1/3)+a*x)**(3/2),x)

[Out]

Integral(1/(x**3*(a*x + b*x**(1/3))**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a x + b x^{\frac{1}{3}}\right )}^{\frac{3}{2}} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(b*x^(1/3)+a*x)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a*x + b*x^(1/3))^(3/2)*x^3), x)